Easy Apply
Easy Apply
As a Machine Learning Software Engineer, you'll develop scalable models with ML techniques, collaborate with researchers and engineers, implement distributed training, and mentor junior colleagues.
About us
Note: We are currently recruiting for multiple positions, however please only apply for the role that best aligns with your skillset and career goals.What you will do PhysicsX is a deep-tech company with roots in numerical physics and Formula One, dedicated to accelerating hardware innovation at the speed of software.
We are building an AI-driven simulation software stack for engineering and manufacturing across advanced industries. By enabling high-fidelity, multi-physics simulation through AI inference across the entire engineering lifecycle, PhysicsX unlocks new levels of optimization and automation in design, manufacturing, and operations — empowering engineers to push the boundaries of possibility. Our customers include leading innovators in Aerospace & Defense, Materials, Energy, Semiconductors, and Automotive.
- Work closely with our research scientists and simulation engineers to build and deliver models that address real-world physics and engineering problems.
- Design, build and optimise machine learning models with a focus on scalability and efficiency in our application domain.
- Transform prototype model implementations to robust and optimised implementations.
- Implement distributed training architectures (e.g., data parallelism, parameter server, etc.) for multi-node/multi-GPU training and explore federated learning capacity using cloud (e.g., AWS, Azure, GCP) and on-premise services.
- Work with research scientists to design, build and scale foundation models for science and engineering; helping to scale and optimise model training to large data and multi-GPU cloud compute.
- Identify the best libraries, frameworks and tools for our modelling efforts to set us up for success.
- Own Research work-streams at different levels, depending on seniority.
- Discuss the results and implications of your work with colleagues and customers, especially how these results can address real-world problems.
- Work at the intersection of data science and software engineering to translate the results of our Research into re-usable libraries, tooling and products.
- Foster a nurturing environment for colleagues with less experience in ML / Engineering for them to grow and you to mentor.
What you bring to the table
- Enthusiasm about developing machine learning solutions, especially deep learning and/or probabilistic methods, and associated supporting software solutions for science and engineering.
- Ability to work autonomously and scope and effectively deliver projects across a variety of domains.
- Strong problem-solving skills and the ability to analyse issues, identify causes, and recommend solutions quickly.
- Excellent collaboration and communication skills — with teams and customers alike.
- MSc or PhD in computer science, machine learning, applied statistics, mathematics, physics, engineering, software engineering, or a related field, with a record of experience in any of the following:
- Scientific computing;
- High-performance computing (CPU / GPU clusters);
- Parallelised / distributed training for large / foundation models.
- Ideally >1 years of experience in a data-driven role, with exposure to:
- scaling and optimising ML models, training and serving foundation models at scale (federated learning a bonus);
- distributed computing frameworks (e.g., Spark, Dask) and high-performance computing frameworks (MPI, OpenMP, CUDA, Triton);
- cloud computing (on hyper-scaler platforms, e.g., AWS, Azure, GCP);
- building machine learning models and pipelines in Python, using common libraries and frameworks (e.g., NumPy, SciPy, Pandas, PyTorch, JAX), especially including deep learning applications;
- C/C++ for computer vision, geometry processing, or scientific computing;
- software engineering concepts and best practices (e.g., versioning, testing, CI/CD, API design, MLOps);
- container-ization and orchestration (Docker, Kubernetes, Slurm);
- writing pipelines and experiment environments, including running experiments in pipelines in a systematic way.
- Equity options – share in our success and growth.
- 10% employer pension contribution – invest in your future.
- Free office lunches – great food to fuel your workdays.
- Flexible working – balance your work and life in a way that works for you.
- Hybrid setup – enjoy our new Shoreditch office while keeping remote flexibility.
- Enhanced parental leave – support for life’s biggest milestones.
- Private healthcare – comprehensive coverage
- Personal development – access learning and training to help you grow.
- Work from anywhere – extend your remote setup to enjoy the sun or reconnect with loved ones.
We value diversity and are committed to equal employment opportunity regardless of sex, race, religion, ethnicity, nationality, disability, age, sexual orientation or gender identity. We strongly encourage individuals from groups traditionally underrepresented in tech to apply. To help make a change, we sponsor bright women from disadvantaged backgrounds through their university degrees in science and mathematics.
We collect diversity and inclusion data solely for the purpose of monitoring the effectiveness of our equal opportunities policies and ensuring compliance with UK employment and equality legislation. This information is confidential, used only in aggregate form, and will not influence the outcome of your application.
Top Skills
AWS
Azure
C/C++
Cuda
Dask
Docker
GCP
Jax
Kubernetes
Mpi
Numpy
Openmp
Pandas
Python
PyTorch
Scipy
Spark
Triton
PhysicsX London, England Office
Victoria House 1 Leonard Circus, London, United Kingdom, EC2A 4DQ
Similar Jobs
Fintech • Legal Tech • Software • Financial Services • Cybersecurity • Data Privacy
The Escrow Business Compliance Analyst manages client onboarding for escrow deals, ensures compliance with KYC regulations, and oversees transaction setup and documentation.
Blockchain • Fintech • Payments • Consulting • Cryptocurrency • Cybersecurity • Quantum Computing
The role involves developing microservices primarily in Golang, maintaining code quality, deploying applications, and collaborating with team members in a hybrid work environment.
Top Skills:
Ci/CdGoHelmK8SPythonSQL
Blockchain • Fintech • Payments • Consulting • Cryptocurrency • Cybersecurity • Quantum Computing
The Product Innovation Manager will lead development of new payment products, engage in idea generation, and partner with teams for market testing and validation.
Top Skills:
Business Model InnovationData-Driven TechnologiesPayments Acceptance EcosystemStablecoin
What you need to know about the London Tech Scene
London isn't just a hub for established businesses; it's also a nursery for innovation. Boasting one of the most recognized fintech ecosystems in Europe, attracting billions in investments each year, London's success has made it a go-to destination for startups looking to make their mark. Top U.K. companies like Hoptin, Moneybox and Marshmallow have already made the city their base — yet fintech is just the beginning. From healthtech to renewable energy to cybersecurity and beyond, the city's startups are breaking new ground across a range of industries.


